

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Visualizing Tunes Or:

How I Learned to Stop Worrying and Love Theory

Olivier Shelbaya

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

CTRIUMF

Isotope Separator and Accelerator (ISAC)

Background

- Two on-line target stations, one off-line
- 17 experiments
- 15 separate beam paths

- ~4500h/y (~188d) off-line source availability
- ~3100h/y (~130d) on-line RIB to experiments
- <u>Roughly one setup per 10 days</u> (usually with different A/q's)

Our Mission

Deliver beam:

- On schedule
- With a stable tune
- In a systematic and reproducible manner

We're particularly concerned with incorrectly set beamline optics values, as this is a completely preventable source of downtime (and within our control)

ISAC Beamlines

Three main types of beamlines:

- Matching sections
- Transport sections
- RF/Accelerator cavities

Transport Sections

Transport sections make up most of our beam paths.

- Require specific input emittance and geometry.
- Should <u>not</u> be tuned, only set.

Example ISAC-I transport section (HEBT).

Matching Sections

Matching sections allow us to shape the beam for optimal transmission through transport sections.

These can be tuned to your heart's content^{*}.

ISAC DTL – the pink quad triplets act as matching sections into the IH RF tanks.

*within reason

- Centered (x,y) beam (no 'slalom' steering)
- Quads on theory, <u>esp. in transport sections</u>
- <u>Quads do not steer beam</u>
- Matching optics tuned as little as possible

- It can be scaled from one A/q to the next
- It has good transmission

 (it minimizes radioactive beam dumped along its path)
- It makes troubleshooting easier
- It crosses several operator shifts seamlessly

Good tunes save time

How Tunes are [ideally] Established

- Exp't specifies requirements beam spot size, intensity, purity)
- ISAC Ops loads theoretical quad. values.
- Matching sections tuned for transmission/beam profile
- Experiment proceeds

(e.g.

Tune for Match through Buncher to RFQ

RIB OLIS

Beam Extraction voltage = 26.000 kV Change

Name	Tune A	tune B
ILT:Q34	.996	.994
ILT:Q35	3.271	4.060
ILT:Q36	2.045	3.456
ILT:Q37	.000	1.164
ILT:Q41	.996	.994
ILT:Q42	.425	
ILT:B43:POS	3.628	
ILT:B43:NEG	4.216	
ILT:Q43	1.996	
ILT:Q44	.922	
ILT:B46:POS	3.628	
ILT:Q48	.882	
ILT:Q50	.751	
IRA:Q1	.620	
IRA:Q2	1.033	
IRA:Q3	1.805	
IRA:Q4	1.282	

<u>Rick Baartman</u> Last modified: Wed Dec 5 23:44:37 PST 2001

Transport section theory values

What Can [non-ideally] Occur...

-Tune established to exp't.

...Counts start dropping (temperature, transients, etc..)

What Can [non-ideally] Occur... (cont'd)

On-line tuning brings counts back

Tune deteriorates over time, as several shifts tune different segments, each responding to different causes of transmission loss.

Challenge: Information Density

Information Density

- Up to 300 elements in some beam paths
- Up to 50 open pages
 (on several machines)
- No automatic A/q 'loader'
- Possibility of human error

		+03.00	au	8.	00
35 MHz Bund	iher o	400.00	2000	-4,	00 -360
DSB					
DSB Bunth	er				
-					
		/usr	1/isac2/edl	/sebt_optics1	.edl
SEBT OPTICS 1		_	Apr 16	U9:U6:U1 /usr1/isa	c2/edl/sebt3a
	SEBT3A	OPTICS		APF	R 16 09:06:00
	Interloc	ks Bypassed		For	ces in Effect
					Currei
Interloc	950	SEBT3A:FC6	out in	-4.886	-07 A -
	$\langle \mathbb{O} \rangle$	SEBT3A:SID6		SEBT3A:CE	M6
	X	SEBT3A:IV5	Open Shut	SEBT3A:PNG6	9.85e-02 T
	-	SEBT3A:SK6		,	
		TIGRESS E	XPERIMEN	Т	
	X	SEBT3A:IV4	Open Shut	SEBT3A:PNG4	4 1.00e+01 T
	$\langle \mathbb{O} \rangle$	SEBT3A:SID4			
	933	SEBT3A:FC4	out in	4.88 e -0)7 A
		SEBT3A:LPM4	in out		
X 🖣		SEBT3A:Q4		13.78 8	0.0000
놀라 4		SEBT3A:Q3		50.00 60	0.0366
늘 🚟 ┥		SEBT3A:YCB2	- 100	-13.00 700	-0.0320
		SEBT3A:XCB2			-0.0473
		SEBT3A:IV2	Open Shut	SEBT3A:IG1	9.52e-02 T
		SEBT3A:Q2		10.00 20	0.0092
n 🗖 🛄 🔳	—	SEBT3A:Q1			0.0031
🚔 💷 🚓	×	SEBT3A:IV0	Open Shut	SEBT3:IG4	6.32e-09 T
		SEBT3:MB4	- 100	-75.00 20	0.0824
· 🔚 😐 🔳		SEBT3:YCB4		-70.00	-0.0076
		SEBT3:IV4	Open Shut	SEBT3:IG2	5.32e-08 T
]		989 4	o
		SEBT3:Q2			0.0195
1742 H	1993	SEBT3:FC2	out in	2.43e-	07 A

The Problem

Previously, we couldn't quickly visualize the status/quality of a tune.

Transmission to experiment dropping.

What's going on?

What's the tune look like?

Are transport sections at theory?

Are matching sections over/under tuned?

TuneDisplay

TuneDisplay generates a visual representation of the tune & its overall quality & steering

<u>Tune quality</u>: % deviation between quad setpoint and theoretical value.

Intended to make:

- troubleshooting easier
- tunes more transparent

About TuneDisplay...

- Is Perl based
- Requires user input (isotope, a/q, energy)

TuneDisp	lay Settings	
Source: Destination: Low Energy [kV]: Low Energy A/Q [decimal]: MEBT A/Q [decimal]: HEBT A/Q [decimal]: DTL Energy [MeV/u]: SCRF Energy [MeV/u]:	OLIS bNMR (He ON) 11 10 10 10 1.5 1	Update
(source)A/Q = 10, E[KeV/u]	= 11 (final)A/Q = 10, E[MeV/u] = 1	X-Steering Overview

- Computes theory values for quads & compares them to current values.
- HTML plotting based on HighCharts API

Theory values – electrostatic for LE, magnetostatic for HE (post RFQ accelerator).

Quad voltage/current [U]:

$$U_{Q} = m_{0} + m_{1} \left| \frac{A}{q} C \right| + m_{2} \left| \frac{A}{q} C \right|^{2} + m_{3} \left| \frac{A}{q} C \right|^{3} + m_{4} \left| \frac{A}{q} C \right|^{4}$$

where:

 $C = \nabla V$ for electrostatics [kV/cm], or $C = \nabla A$ for magnetostatics [kG/cm]. m_i are quadrupole parameters, specific to quad geometry

EPICS polling

- EPICS is polled once/min along selected path
- Polling accomplished via BurtRB (c++)
- Polling takes ~4sec
- Polled values divided by theory values, multiplied by 100 for a % difference from theory
- Quads w/ theory = 0 are not polled (for now).

Example: A Good Tune

Example: A [very] Bad Tune

#0 Fix bugs

- #1 Elegant element name display
- #2 Superimpose cup readings
- #3 Tie-in with ISAC ops beam envelope calculator

Conclusion

X-Steering Overvie

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you! Merci

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

