Visualizing Tunes
 Or:

How I Learned to Stop Worrying and Love Theory

Olivier Shelbaya

QTRIUMF

Isotope Separator and Accelerator (ISAC)

Background

- Two on-line target stations, one off-line
- 17 experiments
- 15 separate beam paths
- $\sim 4500 \mathrm{~h} / \mathrm{y}$ ($\sim 188 \mathrm{~d}$) off-line source availability
- ~3100h/y (~130d) on-line RIB to experiments
- Roughly one setup per 10 days (usually with different A/q's)

Our Mission

Deliver beam:

- On schedule
- With a stable tune
- In a systematic and reproducible manner

We're particularly concerned with incorrectly set beamline optics values, as this is a completely preventable source of downtime (and within our control)

ISAC Beamlines

Three main types of beamlines:

- Matching sections
- Transport sections
- RF/Accelerator cavities

巴TRIUMF

Transport Sections

Transport sections make up most of our beam paths.

- Require specific input emittance and geometry.
- Should not be tuned, only set.

Example ISAC-I transport section (HEBT).

Matching Sections

Matching sections allow us to shape the beam for optimal transmission through transport sections.

These can be tuned to your heart's content*.

ISAC DTL - the pink quad triplets act as matching sections into the IH RF tanks.

What Makes a Good Tune?

- Centered (x, y) beam (no 'slalom' steering)
- Quads on theory, esp. in transport sections
- Quads do not steer beam
- Matching optics tuned as little as possible

What a Good Tune Does

- It can be scaled from one A/q to the next
- It has good transmission
(it minimizes radioactive beam dumped along its path)
- It makes troubleshooting easier
- It crosses several operator shifts seamlessly

Good tunes save time

How Tunes are [ideally] Established

- Exp't specifies requirements beam spot size, intensity, purity)
- ISAC Ops loads theoretical quad. values.
- Matching sections tuned for transmission/beam profile
- Experiment proceeds

Rick Baartman
Last modified: Wed Dec 5 23:44:37 PST 2001

What Can [non-ideally] Occur...

-Tune established to exp't.

...Counts start dropping (temperature, transients, etc..)

\&triumf

What Can [non-ideally] Occur... (cont'd)

- On-line tuning brings counts back

Tune deteriorates over time, as several shifts tune different segments, each responding to different causes of transmission loss.

®triumf

Challenge: Information Density

Information Density

- Up to 300 elements in some beam paths
- Up to 50 open pages
(on several machines)
- No automatic A/q 'loader'
- Possibility of human error

The Problem

Previously, we couldn't quickly visualize the status/quality of a tune.

Transmission to experiment dropping.

What's going on?
What's the tune look like?
Are transport sections at theory?

Are matching sections over/under tuned?

TuneDisplay

TuneDisplay generates a visual representation of the tune \& its overall quality \& steering

Tune quality: \% deviation between quad setpoint and theoretical value.

Intended to make:

- troubleshooting easier
- tunes more transparent

About TuneDisplay...

- Is Perl based
- Requires user input (isotope, a/q, energy)

(source) $\mathrm{A} / \mathrm{Q}=10, \mathrm{E}[\mathrm{KeV} / \mathrm{u}]=11($ final $) \mathrm{A} / \mathrm{Q}=10, \mathrm{E}[\mathrm{MeV} / \mathrm{u}]=1$
- Computes theory values for quads \& compares them to current values.
- HTML plotting based on HighCharts API

Quadrupole Theory Values

Theory values - electrostatic for LE , magnetostatic for HE (post RFQ accelerator).

Quad voltage/current [U]:

$$
\mathrm{U}_{\mathrm{Q}}=m_{0}+m_{1}\left|\frac{A}{q} C\right|+m_{2}\left|\frac{A}{q} C\right|^{2}+\mathrm{m}_{3}\left|\frac{A}{q} C\right|^{3}+\mathrm{m}_{4}\left|\frac{A}{q} C\right|^{4}
$$

where:
$C=\nabla V \quad$ for electrostatics $[\mathrm{kV} / \mathrm{cm}]$, or
$C=\nabla A$ for magnetostatics $[\mathrm{kG} / \mathrm{cm}]$.
m_{i} are quadrupole parameters, specific to quad geometry

EPICS polling

- EPICS is polled once/min along selected path
- Polling accomplished via BurtRB (c++)
- Polling takes $\sim 4 \mathrm{sec}$
- Polled values divided by theory values, multiplied by 100 for a \% difference from theory
- Quads w/ theory $=0$ are not polled (for now).

BTRIUMF

Example: A Good Tune

100

Example: A [very] Bad Tune

100
100

Y-steering Overview

Planned Developments

\#0 Fix bugs

\#1 Elegant element name display
\#2 Superimpose cup readings
\#3 Tie-in with ISAC ops beam envelope calculator

®teriump

Conclusion

TRIUMF

Thank you! Merci

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Canadã'

$\square \quad \begin{aligned} & \text { Western Economic } \\ & \text { Diversification Canada }\end{aligned}$ Diversification de léconomie

Natural Resources
Ressources naturelles

NSERC CRSNG

 de ' Cu 保 C Caneda